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Abstract

The Wearables for Epilepsy And Research (WEAR) International Study Group 

identified a set of methodology standards to guide research on wearable devices 

for seizure detection. We formed an international consortium of experts from 

clinical research, engineering, computer science, and data analytics at the be-

ginning of 2020. The study protocols and practical experience acquired during 

the development of wearable research studies were discussed and analyzed dur-

ing bi- weekly virtual meetings to highlight commonalities, strengths, and weak-

nesses, and to formulate recommendations. Seven major essential components of 

the experimental design were identified, and recommendations were formulated 

about: (1) description of study aims, (2) policies and agreements, (3) study popu-

lation, (4) data collection and technical infrastructure, (5) devices, (6) reporting 

results, and (7) data sharing. Introducing a framework of methodology standards 

promotes optimal, accurate, and consistent data collection. It also guarantees that 

studies are generalizable and comparable, and that results can be replicated, vali-

dated, and shared.
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1  |  INTRODUCTION

Research using wearable devices for seizure detection has 
flourished in the last decade.1 Despite the rapid advance-
ment of technology and the availability of new devices, 
the use of wearables in daily clinical epilepsy care re-
mains rare and its benefit is not adequately supported by 
evidence.2 The lack of studies demonstrating the validity 
of data collected in real- world conditions and the lack of 
collaboration between regulators, health tech companies, 
and medical professionals have impeded clinical adoption. 
Another reason for the gap between research findings and 
the clinical use of wearables may be a lack of standards in 
data acquisition and analysis in this relatively new area 
of research. Data appraisal across studies is hampered by 
variability in data acquisition and inconsistent reporting 
of essential contextual information in practical settings. 
The advantages of common data elements in mobile 
health epilepsy applications were highlighted previously.3

Although specific standards for testing and clinical 
validation of seizure detection devices have been intro-
duced,4 there remains room for improvement across de-
vice development and testing processes. This work builds 
upon these standards and incorporates practical guidance 
on study design based on our collective experience. The 
proof- of- concept that a commercial or noncommercial 
device is suitable for seizure monitoring is first obtained 
from validation studies performed in epilepsy monitor-
ing units (EMUs). Outpatient setting studies are crucial 
for testing and validation.5– 7 Currently, different research 
groups adopt various methods and report heterogeneous 
or incomplete information, leading to inconsistency be-
tween studies and hindering study comparison and rep-
lication. It is important to note that these studies often 
face technical and usability challenges frequently not re-
ported, resulting in the acquisition of sub- optimal data 
sets.

Encouraging data and source code sharing across re-
search groups would enable the development of a com-
mon methodology and would allow the replication and 
aggregation of results across studies. The Wearables for 
Epilepsy And Research (WEAR) International Study 
Group has joined forces from four international study 
groups and has agreed, as a first objective, to identify a 
set of methodology standards encompassing study design, 
data acquisition, and reporting to guide research on wear-
able devices for seizure detection. In this rapidly evolv-
ing field, we believe that a framework of methodology 

standards could guarantee that optimal, accurate, and 
consistent data are collected, that studies are generaliz-
able, and that results could be compared, replicated, and 
validated.

2  |  METHODS

An international consortium of experts from diverse 
fields including clinical research, engineering, computer 
science, and data analytics was formed at the beginning 
of 2020. The consortium brought together four major re-
search centers (Mayo Clinic Rochester (MCR), Boston 
Children's Hospital (BCH), King's College London (KCL), 
and Medical Center –  University of Freiburg (UKF)) that 
have conducted dedicated studies assessing the usefulness 
of wearable devices for seizure detection.

The study protocols and practical experience acquired 
during the development of these studies were discussed 
and analyzed during bi- weekly virtual meetings to iden-
tify commonalities (Figure 1), strengths, and weaknesses. 
Seven major essential components of the experimental 
design were identified: (1) description of study aims, (2) 
policies and agreements, (3) study population, (4) data 
collection and technical infrastructure, (5) devices, (6) re-
porting results, and (7) data sharing.

Each of the seven components was selected in turn as 
the major topic of a virtual meeting. During the meeting, 
the first authors of this work assumed the role of facilita-
tors and stimulated an open discussion based on the expe-
rience from each research center. The major points were 
then summarized and shared for approval with all the co- 
authors and finally elaborated into a document including 
consensus recommendations.

K E Y W O R D S

devices, epilepsy, mHealth, standards, technology

Key points

• The Wearables for Epilepsy And Research 
(WEAR) International Study Group identified a 
set of methodology standards to guide research 
on wearable devices for seizure detection.

• Seven major essential components of the exper-
imental design were identified and discussed.

• A framework of methodology standards could 
promote generalizability and replication of 
studies and data sharing.
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3  |  RESULTS

3.1 | Identification of study aims

The definition of study aims and related methods deter-
mine the patient selection, device choice, data annota-
tions, curation, and data analysis, and should be clearly 
stated early in the study development process. Seizure 
detection may serve many different purposes, from 
closed- loop treatment of acute seizures and impending 
status epilepticus,8,9 to retrospective assessment of clini-
cal seizure burden and assessment of the risk of sudden 
unexpected death in epilepsy (SUDEP), as well as the 
clinical device or medication trial evaluation. Given the 
unreliability of self- reported seizure diaries,10– 12 an ac-
curate seizure detection device could be used to optimize 

medical treatment, avoiding undertreatment due to unre-
ported seizures, and minimizing unnecessary side- effects 
due to seizure over- reporting. An accurate seizure detec-
tion device could also provide objective seizure statistics 
in clinical trials of new antiepileptic drugs and other 
epilepsy treatments, which currently depend entirely on 
patient self- reported seizure diaries.13 Offline detection 
could contribute to the diagnosis of nonepileptic paroxys-
mal events, from psychogenic seizures14– 17 to cardiogenic 
events. Device performance needs to be proven more ac-
curate than self- reported seizure diaries to potentially im-
prove clinical practice. Seizure detection devices may also 
be studied for their potential to measure disease severity, 
for example, associated with SUDEP risk. Ictal autonomic 
changes,18 ictal surface electromyography patterns,19 
post- ictal immobility,20 and post- ictal central apnea21 are 

F I G U R E  1  Characteristics of the 

studies across the different centers
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all potentially measurable by wearable devices and are as-
sociated with post- ictal generalized electroencephalogra-
phy (EEG) suppression (PGES), a risk factor for SUDEP.

The particular seizure semiology types targeted in a 
study may affect the study design, device choice, and data 
annotation protocols. Generalized tonic- clonic seizures 
and focal motor seizures with limb involvement may re-
quire movement or electromyography (EMG) sensor de-
vices and may prompt placement of devices on the body 
segment with greatest ictal movements, whereas non- 
motor seizure types like focal impaired awareness seizures 
may require devices that sense autonomic biomarkers 
such as electrodermal activity (EDA) or heart rate (HR)/
photoplethysmography (PPG), or a combination of all 
these. Detection of daytime seizures requires wearable 
devices to be mobile and to be robust to patient move-
ment, whereas devices for detection of nocturnal seizures 
may be stationary and attached to the patient22,23 or the 
bed,24,25 or a camera may be pointed at the patient from a 
fixed location.26 EEG is often the most versatile signal in 
seizure detection, and mobile EEG- based systems (scalp, 
ear, or sub- scalp) may be able to detect a wide array of 
seizure types.6,27– 29 Device acceptability and adherence 
by patients are essential in seizure detection, and device 
studies should include assessment of acceptability in the 
overall study aims.1

3.2 | Policies and agreements

The process to obtain ethical approval from the institu-
tional review board (IRB) may be time- consuming and 
requires careful planning. Essential steps include delin-
eating a clear research plan, and developing the study 
protocol, but also seeking agreements with device man-
ufacturers, interacting with hospital authorities, and ar-
ranging monitoring plans.

3.2.1 | Informed consent

The process of obtaining informed consent is regulated by 
principles embodied in the current biomedical research 
on human subjects,30 which also considers the needs of 
vulnerable populations (eg, children, cognitively impaired 
individuals, and unconscious patients).31 Comprehensive 
information must be provided to enable people to volun-
tarily decide whether or not to participate in a research 
study and is essential for valid informed consent as defined 
by the Guidelines for Good Clinical Practice.30 Despite the 
low invasiveness of wearable devices, studies involving 
wearable devices are subject to these regulations, and in 
particular the transfer and sharing of anonymized data 

with other groups requires approval. It is important to 
include an “opt- out” strategy to guarantee the right to 
autonomy to those participants who prefer to not share 
data. In particular, sharing anonymized data internation-
ally can be heavily regulated and may require specific con-
sent by the research subject. Moreover, from the point of 
view of researchers, offering study participants the option 
to actively disagree with data sharing is preferred over of-
fering an “opt- in,” as the intent is to share as much data 
with other researchers as possible. Opt- in and opt- out 
policies, also called nudges, have the tendency to promote 
one choice in favor of the other, while still keeping this 
intervention easy to avoid.32 Of course, this will also need 
to conform to local data protection regulations.

3.2.2 | Interaction with regulatory 
authorities and adherence to hospital policies

Each center must be guided by its country's local poli-
cies and regulations, and additional approvals may be 
needed when testing devices without existing Conformité 
Européenne (CE) or US Food and Drug Administration 
(FDA) approvals. Such studies may be considered clinical 
trials or performance evaluation studies, requiring addi-
tional documentation and in some cases authorization by 
government regulatory bodies. The rules vary in different 
countries, and this generates disparities in how devices 
can be tested and scientific data acquired.

Another important consideration is the security rules 
governing the computer network infrastructure in the 
hospital environment. Hospitals regulate and limit access 
to internal networks to protect sensitive data, and specific 
approvals are often required to use existing wireless con-
nections or create new networks.

Data safety and protection are important consid-
erations, especially with the European Union's (EU’s) 
General Data Protection Regulation (GDPR) governing 
data collection and transfer inside the EU and with in-
ternational collaborators. All clinical institutions based 
within the EU must follow these rules, whether collecting 
data or receiving data from partners outside the EU.

3.3 | Study population

Selecting the study population to appropriately address 
the research question is crucial in study design. In par-
ticular, it is important to match the subject characteristics, 
epilepsy type, or seizure semiology in the study cohort to 
the goals of the study. We developed prospective cohort 
studies in which patients with a diagnosis of epilepsy 
were asked to wear one or more wearable devices. Study 



   | 5BRUNO et al.

participants were recruited when they presented for ep-
ilepsy care or in specific follow- up settings, such as the 
EMU.

3.3.1 | Inclusion and exclusion criteria

As physiological responses and signal alterations during 
epileptic seizures may vary across age groups, the inclu-
sion of participants of different ages needs to be taken 
into account. For example, in our studies, the age of study 
participants ranged between 28 days (BCH) and 80 years 
(KCL). Moreover, at the stage of protocol development, it 
is important to identify those comorbidities that may in-
terfere with study adherence or with data collection and 
quality. Patients with conditions impeding the ability to 
participate (cognitive, psychiatric, acutely ill), to wear the 
device (skin conditions), or with frequent vigorous invol-
untary movements (eg, chorea, athetosis) were excluded 
from our studies.

3.3.2 | Data collected

Baseline characteristics of the included participants allow 
the population under study to be better characterized, the 
results obtained to be understood and contextualized, and 
for generalizability of the data to be discussed. For all our 
study participants, data collected during the study period 
included basic demographic characteristics including age 
and gender; clinical information; and seizure characteris-
tics including etiology, localization, type, onset, and fre-
quency of seizures and medications.

While in the EMU, patients were monitored for sei-
zures, which were recorded along with the sensor data 
from the wearables.

3.4 | Data collection and technical 
infrastructure

3.4.1 | Video EEG recordings and 
seizure annotation

Recording data continuously over days with the support 
of video- EEG is essential to capture an adequate number 
of events and to reliably identify and characterize seizures 
through a gold standard.

In our studies, as part of the clinical workup, pa-
tients were admitted to the EMU and connected via scalp 
electrodes to an EEG monitoring system within view of 
a video camera. The length of stay in the EMU varied 
based on the patient's clinical care. The majority of adult 

patients were admitted for a 5-  to 10- day stay, with overall 
shorter durations for children. Some centers (MCR) also 
included ambulatory patients undergoing home video te-
lemetry (HVT) or patients undergoing intracranial EEG 
monitoring.

Trained personnel are needed to perform standard 
video- EEG monitoring, including electrode placement 
according to the 10– 20 international system, and to main-
tain high- quality recordings. EEG recordings were fully 
reviewed, and seizure onset and offset were annotated, 
in addition to supporting information including seizure 
semiology and ictal focus (as reported in Appendix S1). 
Centers collaborating in a multi- center clinical study 
(UKF, KCL) jointly developed and adhered to a review and 
annotation protocol specifying reviewing terminology and 
methodology to guarantee consistency in reporting clini-
cal phenomena across patients. This included, for exam-
ple, definitions of autonomic features such as tachycardia, 
which is ambiguously defined in epilepsy- related litera-
ture; determination of duration of impaired awareness, 
which is not always actively tested for; and an agreement 
on how to consistently store this information in a shared 
database for collaboration. The labeled video- EEG record-
ings were then transferred to a secure server for storage 
and analysis, and seizure onset and offset times were ap-
plied to the simultaneously collected wearable recordings.

3.4.2 | Wearable data collection and device 
integration

Data collection with wearables is generally done in one 
of two approaches: offline collection, where the data 
are stored locally on the device and then downloaded 
at a later time, or online collection, where the data are 
streamed continually via a wireless connection to an ex-
ternal device.

During the online collection, the wearable device usu-
ally has a much shorter battery life, since wireless data 
transmission adds significantly to the overall energy con-
sumption. However, the maximum recording time in the 
offline collection is constrained by the internal storage ca-
pacity of the device. Furthermore, the data must be man-
ually downloaded from the device, potentially requiring 
regular patient participation.

During online collection, this process can be auto-
mated, at the expense of potential for data loss due to con-
nection problems. An added benefit to data streaming is 
the possibility of live data processing and visualization, al-
lowing caretakers and study personnel to evaluate data as 
it comes in. Live data streaming is also a key requirement 
for any intervention or alarm system not directly built into 
the wearable device.
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For our studies, we used both methods in our data col-
lection efforts. MCR and BCH used the offline method 
with their devices, recording to the local device storage 
for up to 2 days at a time and then exchanging devices 
to ensure uninterrupted recording. Devices with stored 
data were connected to a clinic computer via USB cable, 
and through an application provided by the device man-
ufacturer, the data were then downloaded off the device 
and uploaded to third- party cloud storage. The raw data 
were then downloaded via a website listing all uploaded 
recordings.

Conversely, at KCL and UKF, online data stream-
ing was used. The wearable devices were constantly 
connected to a companion device via Bluetooth, and a 
custom- built Android application was used to receive the 
raw data directly from the wearable device and upload it to 
a data storage server on the clinic premises (Figure 2). All 
components of this system like the Android app and the 
server framework are open- source software available on 
GitHub.33 Wearable devices were exchanged twice per day, 
in the morning and evening, to allow for battery charging 
given the shorter battery life in streaming mode. We also 
had frequent problems with the devices’ Bluetooth con-
nectivity. The wearables often disconnected from the 
companion device, either due to the patient walking out 
of range or due to other, sometimes unexplained reasons. 
This would lead to frequent and extensive data loss (see 
Measures of Data Completeness section), especially if the 
wearable device did not offer an on- device data buffer or 
automatic reconnect to the companion device.

3.4.3 | Synchronization between 
wearable and video- EEG data

Time synchronization between an external device and 
the video- EEG is particularly important in the field of 
epilepsy research. The clinical seizure onset, used as the 

ground truth in developing models for seizure detection 
and prediction, can often be pinpointed with sub- second 
precision by clinical experts. Thus synchronizing the in-
ternal time of the wearable device to the time of the video- 
EEG system is essential for data analysis. Furthermore, 
depending on the specific device used, internal inaccura-
cies can cause small shifts in the timekeeping between in-
dividual biosignal data streams.

There are two principal ways of achieving synchroniza-
tion between a wearable device and a video- EEG system. 
The most accurate and technically more advanced way is 
to directly and precisely adjust the on- device timekeeping 
of the wearables to the time used in the clinical video- EEG 
system, for example, by some wireless connection. This 
will give millisecond synchronization between the two 
time bases, but may require some technical set- up before-
hand, and it might not even be available as an option if the 
wearable device does not support this operation. The sec-
ond way of achieving synchronization is through the study 
staff, who can manually induce a visible and recognizable 
change in the wearable's recorded signals while also show-
ing this actionn on the video or EEG signal. Alternatively, 
an artifact or label can be placed simultaneously during 
the device and EEG recording, and then be confirmed by 
EEG, as some standard video- EEG systems suffer from 
an occasional minor desynchronization of the EEG and 
video. The data streams can then be synchronized retro-
spectively by adjusting the wearable data timestamps to 
align the events with the video- EEG. Although the data 
streams can be synchronized to sub- second precision with 
this method, it requires manual modification of the data.

Both methods are susceptible to the internal drift of 
timekeeping in the wearable, caused by inaccuracies in 
the real- time- clock circuits in these devices. This drift can 
accumulate over time, up to several seconds of inaccuracy 
over several hours of recording. Therefore, it is advisable 
to repeat the synchronization process periodically during 
the recording. The automated method is more suitable 

F I G U R E  2  Setup of the technical 

environment for in- hospital studies on 

wearable devices for seizure detection 

(setting epilepsy monitoring unit)
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for this, as the synchronization could be triggered, for ex-
ample, every few minutes. Another method to deal with 
drifting timestamps directly is to measure individual cali-
bration parameters for each device that is used in a study. 
Thereby, the precise sampling rate for a device is found 
by a calibration procedure, to a degree of accuracy that 
allows for a later recalibration of the timestamps in the 
recorded signals. Synchronizing the wearable data with 
the video- EEG system can enable integration of both into 
a common data viewer, which facilitates a better under-
standing of abstract wearable data in the context of the 
actual clinical setting.

In our studies, we have used both methods to vary-
ing degrees of success. MCR used the manual approach 
in combination with sample rate calibration, making use 
of the accelerometer (ACC) signal the device records to 
register the patient's movements. Whenever the device 
was exchanged for battery charging and data download, 
the study personnel shook the device for a few seconds in 
front of the camera of the video- EEG system, resulting in 
a series of distinct spikes in the ACC signal. These could 
then be used to synchronize wearable data signals with 
the shaking motion in the video signal, and to confirm the 
accuracy of the recalibrated timestamps. BCH also used 
a manual approach to synchronize the device and video- 
EEG recordings. Before putting the device on the patient, 
the research personnel simultaneously triggered the E4 
button to create an event mark in the wearable data signal, 
and the event marker button of the video- EEG system. 
This is done because of the video- EEG camera, prompting 
the EEG technician to also mark on the video- EEG that 
a wearable device recording has started. Whenever the 
device is removed from the patient, the same procedure 
is repeated. Later, the marked events in each of the data 
streams can be aligned to attain synchronization. At the 
two other sites, a more automated method was employed. 
Because the devices are programmed to synchronize 
themselves to the clock of the companion Android device 
whenever they are first connected via Bluetooth, it is only 
necessary to synchronize the Android devices to the video- 
EEG time base, which can be done easily via a network 
connection. Consequently, each center synchronized their 
wearable devices each time they were exchanged for bat-
tery charging, with intervals ranging from twice per day to 
every 2 days.

3.5 | Devices

Across the four study sites, we used several different wear-
able devices for data collection from study participants. 
Among the most prominent devices were Biovotion's 

Everion, IMEC’s sensor bracelet, Epitel's Epilog, Byteflies’ 

Dots, and Empatica's E4. The data quality and patient 
acceptance of some of these devices have been reported 
previously.34– 36 In our studies, only the Empatica E4 de-
vice was used at all of the four sites.

Wearable devices of the types used in clinical epilepsy 
studies can be categorized in various ways, all of which 
should factor into the decision when selecting a device for 
a study:

1. Medical certification: Wearables, in general, are em-
ployed in many different fields beyond medicine, so 
for use in studies as described here, the certification as 
a medical device can be an important factor. IMEC’s 

sensor bracelet for example, as a prototype device, is 
not certified as a medical device, whereas the Empatica 

E4  has a European CE class IIa certification as a 
medical device.

2. Modalities: Different devices record different biosignals 
at different sample rates, so an informed decision needs 
to be made about exactly what is needed to facilitate the 
outcomes of the given study. Multimodal devices are 
generally regarded as more effective and versatile,37– 39 
whereas a device recording only one modality may be 
sufficient for a very specific task. Epitel's Epilog, for 
example, provides only a single- channel EEG signal, 
whereas the Empatica E4 records three- axis accelerom-
etry (ACC) at a sampling rate of 32 Hz, EDA at 4 Hz, 
skin temperature at 4  Hz, and PPG at 64  Hz, which 
is processed on the device to a filtered blood volume 
pulse signal.

3. Data mode: Generally, there are two modes in data col-
lection, online or offline, as described further in Section 
3.4.2. In most cases a given device supports only one 
mode for recording data, so either the study protocol 
needs to be adjusted to support the device, or an ap-
propriate device needs to be chosen for an already es-
tablished study protocol. The online streaming mode is 
a requirement for systems that should include any kind 
of alarm or intervention. Byteflies’ Dots, for example, 
support only offline recordings, whereas the Empatica 

E4 has the option to employ both methods.
4. Battery life: With current battery technology, the bat-

tery life of smaller devices or those that employ on-
line raw data streaming is usually measured in hours, 
whereas somewhat larger devices with offline, on- 
device data storage can sometimes be active for days 
without the need to recharge. IMEC’s sensor bracelet, 
for example, has a typical battery life of seven days, 
while the Empatica E4  has a manufacturer- specified 
battery life of 24– 48 h, although in our studies we often 
observed empty batteries after half that time. This was 
in part due to the shorter battery lifespan when the E4 
is used in streaming mode.
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5. Device placement: Wearables are usually placed at a 
specific part of the body, which can be influenced by 
the study protocol and should be considered when 
choosing a device. In turn, the placement of the device 
may affect both the sensitivity and specificity of a pro-
spective seizure detector. The Empatica E4, for exam-
ple, is worn around the wrist, while the Byteflies’ Dots 
can be attached to any part of the body by use of an 
adhesive patch.

Furthermore, research- grade devices, such as the 
Empatica E4, often have several advantages and disadvan-
tages over other devices that are marketed directly to con-
sumer end- users. Access to raw data is a necessity for many 
research studies, but something that consumer- grade de-
vices and services rarely provide. Furthermore, companies 
offering research- grade devices are sometimes open to col-
laboration, for example, by supporting researchers with 
specialized knowledge of device capabilities.

On the other hand, research devices are often more 
expensive than their consumer counterparts and can be 
more cumbersome and uncomfortable to wear, since the 
device's aesthetic design is not a priority for the manufac-
turer. In our studies, however, we consistently got more 
positive feedback from patients on the wearability of the 
Empatica E4, as compared to the Biovotion Everion, which 
is a device on the market for regular consumers to buy.34

3.6 | Reporting results

3.6.1 | Usability challenges and users’ 
perspectives

Wearable devices are progressively becoming an avail-
able and innovative tool for continuous seizure monitor-
ing. People living with epilepsy have expressed interest 
in using new technologies in their daily life40 and several 
unmet needs might be addressed by adopting digital solu-
tions into health care services.40,41 The research focused 
on hypothetical scenarios has highlighted that motivation 
to use wearables is not driven only by the accuracy and 
reliability of the device performance. A design incorporat-
ing comfort and ease of use is also essential for accept-
ance and long- term adoption.34 Obtaining feedback from 
patients after direct experience wearing devices is the 
only way to fully understand the practical and technical 
issues faced.42 However, feedback on device comfort and 
usability has been collected only sporadically in previ-
ous studies, and information reflecting the direct experi-
ence of study participants is missing. The limited number 
of investigations exploring users’ direct experience re-
ported improvement of quality of life for both patients 

and caregivers,42 a benefit to autonomy and increasing 
independence in activities,23,42 as well as a generally good 
evaluation of technology usability.7,23 Barriers to use, as 
reported, include discomfort in wearing the device during 
sleep, technical difficulties, and the burden of adding an-
other aspect to routine epilepsy care.42 In addition to the 
key requirements of a reliable and accurate performance, 
a successful integration of digital solutions into a patient 
pathway requires acceptance of the technology. The latter 
is required for long- term engagement, which is essential 
to a good detection performance, and to optimize the ben-
efit to the patient. To identify and avoid potential barriers 
to a long- term engagement with the technology, patients’ 
views and needs need to inform the development of the 
technology and study design, and users’ opinions on usa-
bility and acceptability should be collected systematically. 
Methods to obtain feedback from study participants range 
from a focus group (useful during the first stages to guide 
research questions and research development), interviews 
(at set time points during the study, for example, study 
end or in case of participants withdrawal), collection of 
participants’ observations (any time in the course of the 
study), and questionnaires (allowing direct comparisons 
between subjects and the identification of subject- related 
factors influencing their experience in the study). At KCL 
and UKF, participants’ experience and the perceived ease 
of use and comfort of the technology were assessed at the 
end of the study using a self- administered Technology 
Acceptance Model Fast Form (TAM- FF).43 Moreover, in 
a group of study participants, the experience of wearing 
multimodal sensor devices was also assessed via semi- 
structured interviews covering questions on their experi-
ences and concerns using the wearables, their thoughts 
about ambulatory use of wearables, and their reasons for 
stopping to wear the device if applicable.44

3.6.2 | Data quality and completeness

The value of collected data can be assessed by data com-
pleteness and data quality. Data quality measures evalu-
ate properties like the noisiness, accuracy, and potential 
information gain of the data, whereas data completeness 
gauges data loss during recording. In the context of explor-
atory research, both data quality and completeness are of 
utmost importance, and several steps were taken to reflect 
that need. Collecting raw, unprocessed data from weara-
ble devices, forgoing any internal processing, can facilitate 
the assessment of data quality. This will give a complete 
and clear picture of the suitability of the device for the 
task at hand. Furthermore, sharing data across different 
research sites and groups can enhance the value of the 
data set, advance the understanding of data complexities, 
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and facilitate scientific exploration of the data. Another 
important tool to effectively assess data value is the use of 
data dashboards. These dashboards usually take the form 
of a website that aggregates data completeness and quality 
measures as new data come in and displays it with intui-
tive charts and tables. Especially in the context of live data 
streaming, they can monitor system function and user 
adherence.

Measures of data completeness
Gaps in the data can be caused by several issues related to 
data collection. A common cause of data loss is the limited 
battery life of the device. Charging the battery takes time 
(typically hours), and even if a second device is used to 
replace the one with an empty battery, this creates a small 
but noticeable gap in the recording.

Another common source of data loss is connection 
problems with wireless data streaming. With a Bluetooth 
connection, the maximum range between the wear-
able and its companion device is usually 10  m within 
the same room. Whenever a wearable device is discon-
nected, it needs to automatically reconnect and transfer 
any buffered data, otherwise, any data collected while the 
device is disconnected will be lost. The Empatica E4 de-
vice used in our studies does not implement such func-
tionality in Bluetooth streaming mode. When this device 
loses its Bluetooth connection it powers off completely 
and must be manually restarted for the connection to be 
re- established. This led to significant data loss in the two 
studies that used the device in streaming mode.

Finally, data gaps can be introduced by human inter-
action. Taking the device off for a short time, for example, 

during a shower or neuroimaging, causes several minutes 
of data loss. Incorrect operation of the device can also lead 
to lost data. Some of these causes for data incompleteness 
can be avoided, for example, by the careful preparation 
of a study protocol detailing proper usage of the device. 
Others are inevitable, and some gaps in the data set are 
unavoidable.

In the studies presented here, the data loss varied with 
the different sites and their respective data- collection pro-
tocols. The data coverage presented here was determined 
in two different categories: the overall data coverage and 
the number of missed seizures during each patient's re-
cording. Data coverage is computed by counting the 
number of samples per modality collected from the wear-
able device, per patient, and dividing by the number of 
expected samples given the recording time. This method 
potentially undercounts the data loss because it ignores 
any loss when the device is not worn. The same method-
ology is applied to counting missed seizures, that is, only 
seizures that happened within the start and end of the re-
cording are counted toward the expected amount.

Among patients who wore the Empatica E4 device in 
the UKF and KCL sites, the data coverage was only 52% 
and 40%, respectively, with the loss of data attributed in 
large part to the live data streaming functionality, but it 
was also affected by device recharging and the patients 
bathing during their in- hospital stay. Conversely, in the 
two other sites that used the offline recording mode of the 
device, the data loss was <10%.

Figure 3  highlights data completeness considerations 
for a patient in the UKF cohort. Two gaps in the data as 
well as missing seizures can be seen in this example. The 

F I G U R E  3  Spectral entropy of the blood volume pulse signal of the E4 device during the recording of a single patient recruited at the 

UKF site. The signal gives an idea of the quality of the BVP data for heart rate calculation; blue means the signal is of higher quality, that 

is, contains fewer artifacts. The gaps show times when there was a problem with the recording and no BVP signal was present. The green 

circles mark seizures during which wearable data were recorded; the red squares mark seizures where no data were available
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recording for this patient is missing approximately 30% of 
its expected data, and 17 of 33 seizures were missed as a 
result.

Measures of data quality
Data quality is an important property for any scientific 
data set. The quality of data collected from wearable de-
vices can be degraded by several issues related to the sen-
sor hardware and application. Any physical sensor has 
mechanical or electrical imperfections that can produce 
sensor noise. Imperfections can also be caused by external 
stimuli introducing an unwanted variation of the data, a 
so- called artifact. These artifacts can sometimes be cor-
rected after data collection, but other times completely 
disrupt the underlying data. A relevant example is motion 
artifacts in the PPG data collected from the Empatica E4 
device. A PPG sensor works by measuring the light reflec-
tion of the skin, which changes with blood volume, that is, 
with each pulse. However, light from an external source, 
for example, sunlight, can compromise the reflective 
value measured by the photodiode of the sensor. If the de-
vice was not tightly fastened around the wrist, the actual 
blood volume pulse data for that segment is not recover-
able. This can be a significant problem for data collection 
during physical activity or during convulsive seizures. 
Another source of poor data quality is inaccuracies intro-
duced by the sensor, for example, caused by faulty or de-
teriorated hardware.

To measure data quality, numerous methods can be 
found in existing literature, and are usually specific to a 
certain sensor modality.4,15,35,45,46 Discussing the pros and 
cons of specific data quality indices is out of the scope of 
this report; instead, we give an example of a data quality 
measure applied to the wearable device recordings of a 
single patient from the Freiburg cohort. Figure 3 shows a 
plot of the spectral entropy calculated from the Empatica 

E4’s BVP signal collected from a single patient at the UKF 
site. Spectral entropy gives an idea of the quality of the 
BVP data for heart rate calculation. Lower values mean 
the signal is of higher quality, that is, contains fewer ar-
tifacts. The signal quality is generally higher overnight 
when patients rest. During the daytime, patients tend to 
be more active, and the signal is prone to movement ar-
tifacts, represented by higher values in spectral entropy.

3.6.3 | Seizure detection evaluation

The common goal of most epilepsy- related studies with 
wearable devices is to achieve robust seizure detection 
and prediction. Reporting results of evaluations of these 
methodologies is an important part of any study and 
should follow a defined protocol and refer to specific 

standards.4 Sensitivity and specificity are the two corner-
stones of reporting results of binary classification, espe-
cially in a medical context. Sensitivity, also often called 
recall in a machine learning context, measures the pro-
portion of true positives (TPs) to all expected positive in-
stances. It must always be reported as a study outcome, 
because for seizure detection it directly describes the re-
spective methodology's ability to robustly detect seizures 
from the wearable data. On the other hand, specificity 
measures the proportion of true negatives to all expected 
negative instances. To report measures like specificity 
based on negative instances in the context of wearable 
seizure detection, the data stream must be segmented into 
equal- sized portions of either the seizure or nonseizure 
class. Due to the large data imbalance of these two classes 
that is usually observed in epilepsy studies, with some-
times multiple days of nonseizure portions in the data 
interrupted only by often minute- long seizure portions, 
the specificity measure is artificially boosted to consist-
ently report values of >98%, even if there are many false 
positives (FPs). Because of this lack of informative value, 
specificity is often omitted when reporting on the perfor-
mance of a seizure detection system. Instead, the false 
alarm rate (FAR) or positive predictive value (PPV) can 
be reported as inverse measures of a seizure detection sys-
tem's ability to correctly identify nonseizure periods. The 
FAR reports the number of false detections over a certain 
timespan, often chosen as a day (24  h). For example, a 
FAR of 0.5/24 h would mean that the system, on average, 
produces one false alarm every 2 days. FAR can also be 
separately reported for daytime and night- time periods, 
as false nocturnal alarms may be much more disrupting 
and less acceptable to patients and caregivers. The PPV, 
also often called precision in a machine learning context, 
is the proportion of TPs to all detected positives. It thus 
gives a measure of the number of FPs to TPs, for example, 
a PPV of 50% would describe a result of the same number 
of FPs as there are TPs. At least one of these measures, 
FAR and PPV, must always be reported as a study out-
come, to properly convey the number of FPs a system is 
likely to produce. One possible way to counteract false 
alarms could be to ask patients to perform specific peri-
odic movements like brushing their teeth. These move-
ments, recorded by the wearable, could then be used to 
adjust a model to be more robust against nonepileptic ac-
tivities of daily living.

To visualize the results of an evaluation of a seizure de-
tection model, or to compare the performance of multiple 
models, the receiver- operating characteristic (ROC) curve 
is a widely used and accepted tool. It plots the probabil-
ity of detection against the probability of false alarm (FP 
and TP rates) of a binary classifier at varied discrimination 
thresholds. Thereby, it visualizes the trade- off a model 



   | 11BRUNO et al.

makes between detecting true events and producing false 
alarms.

For all of these measures, there is generally a trade- off 
between reporting them on a per- patient basis and taking 
the mean across patients or reporting the overall value 
over the whole applicable data set. Optimally, both ag-
gregations should be reported in the outcomes of a study, 
as they often both provide slightly different but equally 
worthwhile conclusions.

3.7 | Data sharing

Free and open platforms for sharing data and facilitating 
collaboration are important research resources. Open 
databases (from which data can be explored and down-
loaded), and novel algorithms and source code (that can 
be shared between collaborators) are important tools in 
neuroscience projects. Different examples can be cited, 
including openneuro.org, epilepsyecosystem.org, ieeg.
org, and physionet.org. Research teams should be en-
couraged to share raw data and data processing scripts 
to allow replication and validation of results. Online 
competitions have also been successful at fostering 
the development of high- performance seizure detec-
tion and forecasting algorithms based on intracranial 
EEG,47– 49 and similar results with wearable data could 
be expected. Moreover, sharing data, methodologies, 
and results with partner organizations, like other clini-
cal centers or even device manufacturers, can be greatly 
beneficial to the advancement not only of the research 
field of wearable seizure detection in general but also 
the usability and development of new devices and tech-
nologies. This includes the sharing of raw data collected 
during studies, as well as any scripts and software used 
in the processing and scientific analysis of the data, es-
pecially concerning seizure detection. To facilitate data 
sharing, a standardized data format and schema should 
be adopted to prevent the use of different and poten-
tially not compatible formats. This would promote the 
replication and validation of results in a collaborative 
manner and encourage the aggregation of data across 
research groups. In the long run, giving valuable and 
constructive feedback on device performance and us-
ability to manufacturers, and sharing these experiences 
with other organizations, could be a huge boon to pos-
sibilities in the treatment of epilepsy, and patients with 
epilepsy by extension. To accommodate and facilitate 
the aforementioned sharing of data and experiences, 
however, a need for open and structured systems and 
forums exists. Here, clinicians, researchers, develop-
ers, manufacturers, as well as patients could collaborate 
and contribute to the advancement of the treatment of 

epilepsy with the use of wearable devices. And although 
strict data protection rules like the EU’s GDPR may hin-
der collaboration, the authors express their hope that 
these restrictions will not jeopardize the major benefits 
of sharing pseudonymized or anonymized data for re-
search progress and patient care.

4  |  CONCLUSIONS AND 
RECOMMENDATIONS FOR FUTURE 
STUDIES

This manuscript provides a methodological framework 
that could guide future research on seizure detection de-
vices, as well as practical information from the experience 
of our groups. We identified seven essential components 
of the experimental design for which we would like to pro-
vide specific recommendations (Table 1).

In 2021, a joint working group between the 
International League Against Epilepsy and International 
Federation of Clinical Neurophysiology (ILAE- IFCN) has 
endorsed a clinical practices guideline, most importantly 
listing several specific areas, concerning automated sei-
zure detection using wearable devices, that are still in need 
of further research and development.50 This article can be 
seen as a first step toward the practical implementation 
of studies aimed at addressing this need. Specifically for 
phase 0– 3 studies,4 the recommendations compiled here 
can serve as a basis to develop detailed and robust study 
protocols.

We believe that sharing the experience of multiple in-
ternational centers could help clarify the often intricate 
process underlying research in this field. The collection of 
more homogeneous data has the potential to enable the 
development of collaborations across research groups and 
to boost clinical advancement of these devices.
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T A B L E  1  Recommendations for studies using wearable devices 

for seizure detection

1. Study aims

• Main study aims should be identified early as they influence 

most aspects of study design

• Seizure detection purposes include closed- loop treatment of 

acute seizures and/or status epilepticus, assessment of seizure 

burden and severity (toward sudden unexpected death in 

epilepsy [SUDEP] and seizure recurrence risk stratification), 

and clinical trial outcome evaluation, among others

• The type of seizures to be investigated should be defined from 

the start, as this informs the required biosignals and therefore 

limits the choice of wearable devices to be used

2. Policies and Agreements

• Early involvement of the key figures is recommended 

to guarantee study feasibility. This includes device 

manufacturers, hospital authorities, IT departments, and 

study participants through informed consent

• Participants’ approval for future sharing of the anonymized 

data set should be obtained

3. Study population

• Clinical and demographic information needs to be collected 

and reported to clearly define the population addressed

• General seizure semiology should be specified, for example, 

motor vs non- motor seizures

• Seizure annotation protocols and accurate description of the 

ictal phenomenology are of paramount importance to allow 

accurate data analysis and comparisons, especially when 

video cannot be shared for privacy reasons

• Mutual agreements between centers on standardized 

definitions and methodology should be made in multi- center 

studies

4. Data collection and technical infrastructure

• A clear description of the data collection procedures is 

paramount to understand the results obtained, and to 

uncover and potentially mitigate technical challenges

• Considerable thought must be put into the device integration 

and synchronization effort. Wearable devices have an 

inherent time drift and need to be regularly synchronized 

with the video- EEG system. A Bluetooth connection for 

data collection can have some benefits such as live data 

availability, but they should be weighed against the greater 

potential for data loss and reduced battery life

• Having a battery recharging plan ahead of the study may 

prevent the loss of data given wearable devices’ short battery 

life

• To accurately collect seizure details under the supervision of 

an epileptologist is fundamental to subsequently design high- 

quality studies

• Some type of dashboard or other means of viewing collected 

data should be used to keep an overview of the data set 

and patient adherence. Furthermore, joint visualization 

of wearable and video- EEG data can be beneficial for 

understanding the context of information gained from the 

wearable device

5. Devices

(Continues)

• Choosing the preferred device for a study can be difficult; If it 

is possible to practically test multiple devices before the study 

starts, this will remove a considerable amount of uncertainty 

during the actual data collection

• Both ease of technical integration as well as data quality 

and quantity measures should be considered and tested 

thoroughly beforehand

• Depending on study aims and research goals, a choice 

between research devices or even prototypes, and consumer 

devices must be made. Research devices usually provide 

easier raw data access while consumer devices usually offer 

better usability and acceptability among patients

• Study aims and research goals should influence the choice 

of a device; for research exclusively on convulsive seizures a 

mono- modal device may be sufficient, but research on other 

seizure types may require multi- modal data

6. Reporting results

• Users’ opinions on usability and acceptability should be 

collected and reported

• Data quality and quantity should be evaluated and reported 

systematically

• The treatment of artifacts and poor- quality data should follow 

an objective protocol, which should be reported in the study

7. Data sharing

• Raw data and data processing scripts should be shared to 

allow replication, validation, and aggregation of data across 

research groups

T A B L E  1  (Continued)
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